- Witten Theories and Givental ’ S Formalism

نویسنده

  • E. FEIGIN
چکیده

In [Gi3] Givental introduced and studied a space of formal genus zero Gromov-Witten theories GW0, i.e. functions satisfying string and dilaton equations and topological recursion relations. A central role in the theory plays the geometry of certain Lagrangian cones and a twisted symplectic group of hidden symmetries. In this note we show that the Lagrangian cones description of the action of this group coincides with the genus zero part of Givental's quantum Hamiltonian formalism. As an application we identify explicitly the space of N = 1 formal genus zero GW theories with lower-triangular twisted symplectic group modulo the string flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formalism for Relative Gromov-witten Invariants

We develop a formalism for relative Gromov-Witten invariants following Li [14, 15] that is analogous to the Symplectic Field Theory of Eliashberg, Givental, and Hofer [2]. This formalism allows us to express natural degeneration formulae in terms of generating functions and re-derive the formulae of Caporaso-Harris [1], Ran [19], and Vakil [21]. In addition, our framework gives a homology theor...

متن کامل

On a Conjecture of Givental

These brief notes record our puzzles and findings surrounding Givental’s recent conjecture which expresses higher genus Gromov-Witten invariants in terms of the genus-0 data. We limit our considerations to the case of a complex projective line, whose Gromov-Witten invariants are well-known and easy to compute. We make some simple checks supporting his conjecture. E-mail: [email protected]. E-...

متن کامل

Quantum Riemann–roch, Lefschetz and Serre

Given a holomorphic vector bundle E over a compact Kähler manifold X, one defines twisted Gromov-Witten invariants of X to be intersection numbers in moduli spaces of stable maps f : Σ → X with the cap product of the virtual fundamental class and a chosen multiplicative invertible characteristic class of the virtual vector bundle H0(Σ, f∗E) H1(Σ, f∗E). Using the formalism of quantized quadratic...

متن کامل

Convergence of Quantum Cohomology by Quantum Lefschetz

Quantum Lefschetz theorem by Coates and Givental [4] gives a relationship between the genus 0 Gromov-Witten theory of X and the twisted theory by a line bundle L on X. We prove the convergence of the twisted theory under the assumption that the genus 0 theory for original X converges. As a byproduct, we prove the semisimplicity and the Virasoro conjecture for the Gromov-Witten theories of (not ...

متن کامل

Givental’s Lagrangian Cone and S-equivariant Gromov–witten Theory

In the approach to Gromov–Witten theory developed by Givental, genus-zero Gromov–Witten invariants of a manifold X are encoded by a Lagrangian cone in a certain infinite-dimensional symplectic vector space. We give a construction of this cone, in the spirit of S-equivariant Floer theory, in terms of S-equivariant Gromov–Witten theory of X × P. This gives a conceptual understanding of the “dilat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008